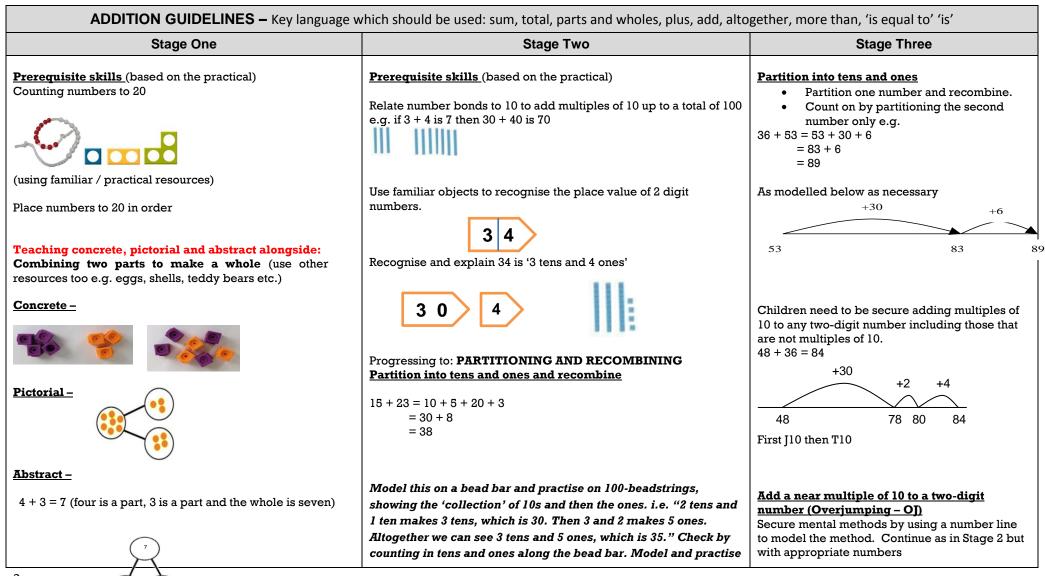


INTRODUCTION;

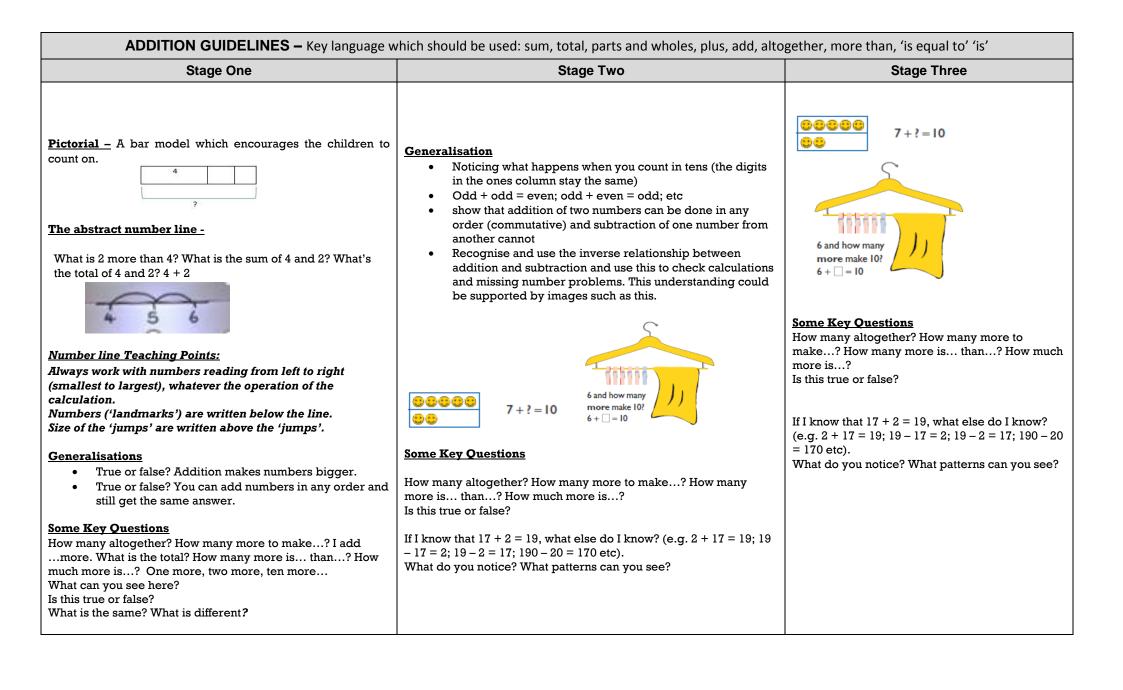
This calculation policy, taken from the new National Curriculum for Mathematics, has been written in line with the programmes of study. It provides guidance on appropriate calculation methods and progression. The content is set out in stages under the following headings: addition, subtraction, multiplication and division. AIMS OF THE POLICY:

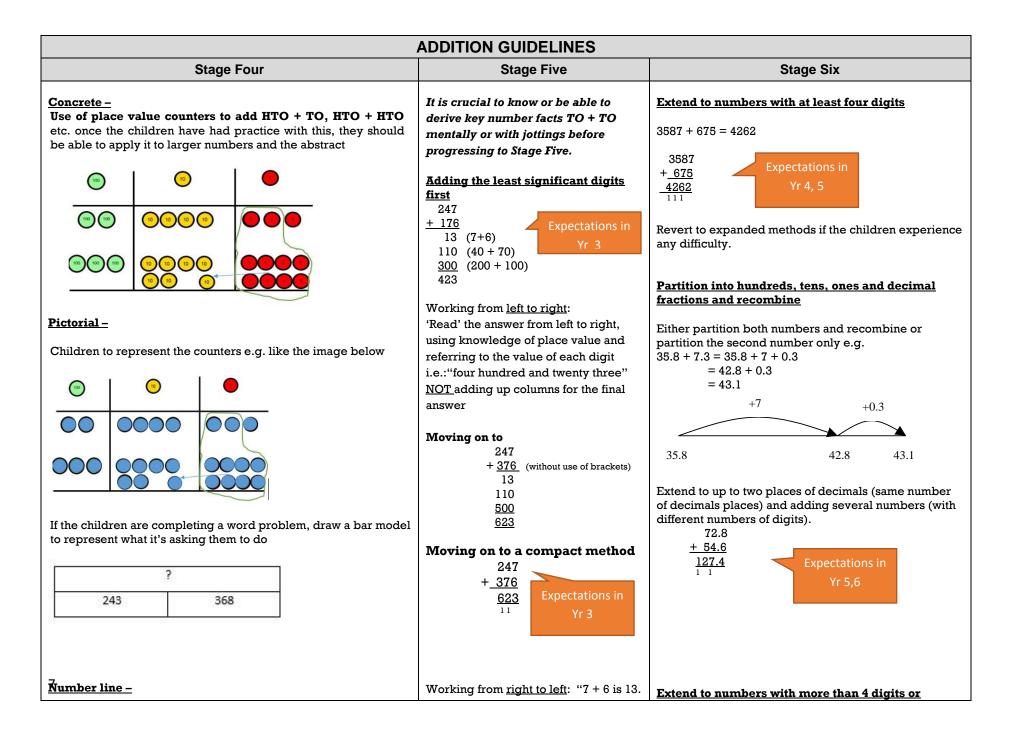

- To ensure consistency and progression in our approach to calculation
- To ensure that children develop efficient, reliable and formal written methods of calculation for all operations
- To ensure that children can use these methods fluently with confidence and understanding

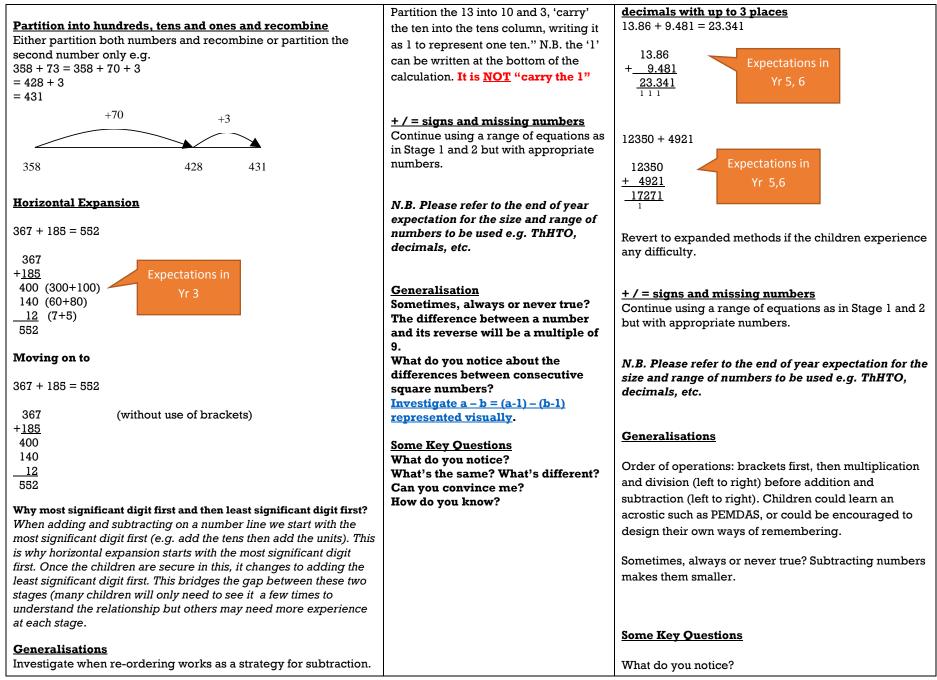
HOW TO USE THIS POLICY:

Under the 2014 National Curriculum, *'pupils should be fluent in written methods for all four operations*', including applying these skills with more than 4 digit numbers. Therefore, we are working towards ALL children having a grasp of these methods, with a conceptual understanding of how the method works and what the stages mean.

- Use the policy as the basis of your planning but ensure you use previous or following years' guidance to allow for personalised learning (Learning without Limits).
- Always use AfL to identify suitable next steps in calculation for groups of children.
- If, at any time, children are making significant errors, return to the previous stage in calculation.
- Always use suitable resources, models and images to support children's understanding of calculation and place value, as appropriate. The list of resources is not exhaustive and the policy doesn't recommend using one set of resources - rather can be supplemented with a variety of resources, which work for your class.
- For each of the four arithmetic rules, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concretepictorial-abstract (CPA) approach [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept; children should master all three phases within a year group's scheme of work.
- Generalisations and key questions at the end of each stage supports teacher assessment.
- Expectations for each year group are listed in bold at the end of each section.


This policy is purposely set out as a progression of mathematical skill. The focus must always remain on the breadth and depth of mathematics, rather than accelerating through concepts, in order to deepen their conceptual understanding by tackling challenging varied problems.




3

Stage One	Stage Two	Stage Three
	with place value arrow cards, Numicon, bead strings or Dienes, using known facts and place value to calculate each step.	E.g. 35 + 19 is the same as 35 + 20 – 1.
Bonds up to 10 and to make 10	<u>Count on in tens and ones</u> <u>J10</u> (jumping in 10s)	
Addition as combining groups	23 + 12 = 23 + 10 + 2 = 33 + 2 = 35 Model this on a number line starting at 23 and jumping 10 (J10) to make 33 and then add 2 in one jump.	Once a child is able to add 3 digit numbers of number line securely move on to vertical expansion. + / = signs and missing numbers Continue using a range of equations as in Stag and 2 but with appropriate, larger numbers.
Addition as counting on	+10 -23 -23 	Concrete – TO + TO using base 10. Continue to develo understanding of partitioning and place valu and use this to support addition. Begin with r
Doubling numbers within 20	The steps in addition often bridge through a multiple of 10 e.g. Children should be able to partition the 7 to relate adding the 2 first to target the 10 and then the 5. 8 + 7 = 15 +2 $+5$	exchanging. 36 + 25
Number bonds to 20 12 8	$\frac{1}{8}$ $\frac{1}{10}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{15}$ Continue using a range of equations as in Stage 1 but with appropriate, larger numbers.	

Stage One	Stage Two	Stage Three
Children need to understand the concept of equality before using the '=' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.	$24 + 5 = 20 + \square$ and $32 + \square + \square = 100 \qquad 35 = 1 + \square + 5$	<u>Pictorial –</u> This could be done one of two ways:
2 = 1 + 1 2 + 3 = 4 + 1 $3 = 3$ $2 + 2 + 2 = 4 + 2Missing numbers need to be placed in all possible places.$	<u>Concrete –</u> TO + O using base 10 . Continue to develop understanding of partitioning and place value.	то
3 + 4 = 0 $3 + 4 = 7$ $4 = 7$ $7 = 0 + 4$ $Yr 1$ $Yr 1$ $Free Number Line$ $= 3 + 4$ $Free T = 3 + 4$ $Yr 1$ $Free T = 11 and 6 + 5 = 5 + 0$ $Free T = 0 + 5$	e.g - 41 + 8	XXXXX XXXXX XXXXX X
Children use a numbered line to count on in ones. Children use number lines and practical resources to support calculation and teachers <i>model</i> the use of the number line. e.g. 7+ 4:	Pictorial – Children to represent the concrete using a particular symbol e.g. lines for tens and dot/crosses for ones.	Tens Ones
1 1	T 0	 <u>Generalisation</u> Noticing what happens when you count in tens (the digits in the ones column start the same)
<u>Concrete –</u>	xxxxxxx	 stay the same) Odd + odd = even; odd + even = odd;
Counting on using number lines by using cubes or Numicon.	Expectations in <u>Concrete-</u> Yr 2	 etc show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another
	41 + 8 $1 + 8 = 9$ $40 + 9 = 49$	 cannot Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

Stage One		Stage Two		Stage Three
What do you notice? Rieregnieitenskille/jb#sediferth# ?practical)	There	are two concepts linked to subtraction:	How do	you know? <u>Use known number facts and place value</u>
Can you convince me?				·
How do you know?				

Yrl – recall and jottings for O+O, T+O, T+T, TO+O (within 20 including 0)

Yr2 – TO+O, T+TO, TO+TO, O+O+O

Yr3 – mental methods for HTO + O, HTO+T, HTO+H; written methods for HTO+TO, HTO+HTO

Yr4 – written methods as above and ThHTO+ThHTO, O.t+O.t, £O.th+£O.th

Yr5 – written method for addition of numbers with more than four digits; 2 or more integers, decimals with 2dp e.g. 29.78 +

54.34

Yr6 – As above using increasingly larger numbers

Differentiation Steps for each Stage:

- Not crossing tens
- Crossing Tens
- Crossing Hundreds Only
- Crossing Tens and Hundreds

In addition:

- The number line must be modelled as an image to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation can be carried out mentally then do not give it to practice vertical calculation, e.g. TO + TO should not be calculated vertically.

Always present calculations horizontally in order to consider mental calculations.

Number bonds to 10.

Counting back from 20. Find one less than a given number.

Subtract using quantities and objects 2 single digit numbers.

Count back to subtract single digit numbers.

1234567890

There are two concepts linked to subtraction:

Subtract – where it is natural to count back to 'take away'.

Find the difference – where the understanding of the vocabulary leads to using addition to count on [complementary addition].

Understand subtraction as 'take away'.

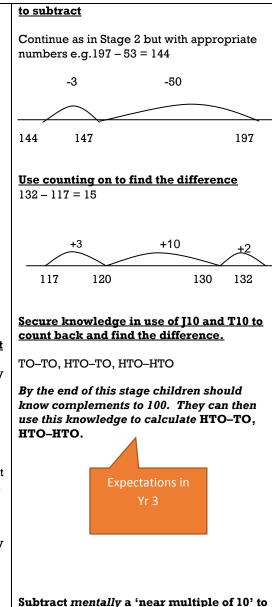
Concrete -

Physically taking away and removing objects from a whole (use various objects too). Rather than crossing out, children will physically remove **Subtract** – where it is natural to count back to 'take away'.

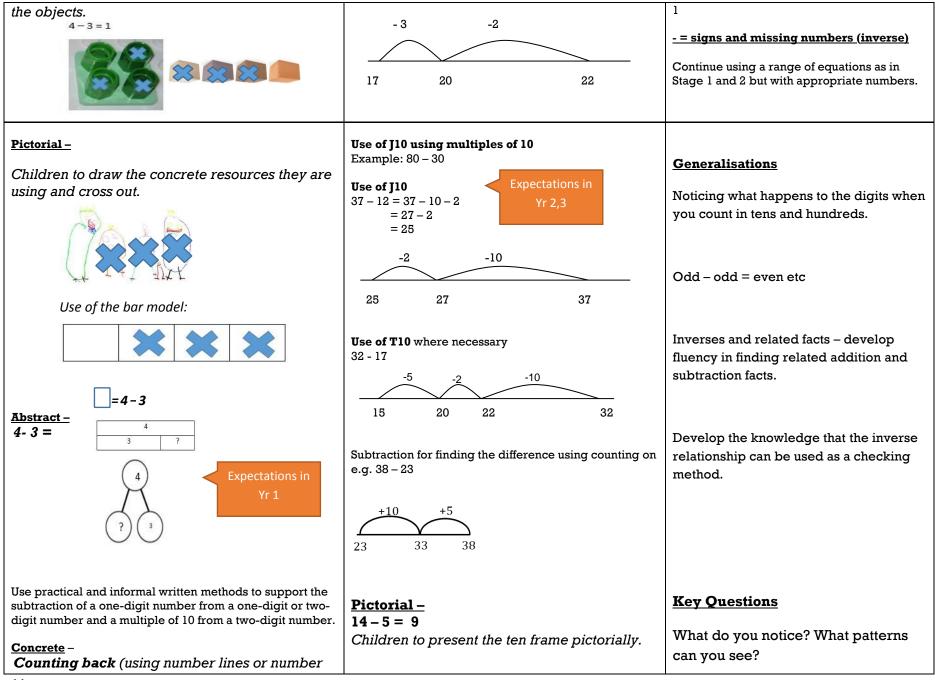
Find the difference – where the understanding of the vocabulary leads to using addition to count on [complementary addition].

Making 10 (using Numicon or ten frames)

Children could also do this by subtracting a 5 from the 10.

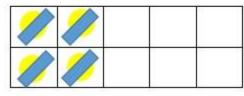

Use known number facts and place value to subtract Using knowledge of number bonds to subtract mentally from multiples of 10s e.g. 30 - 4

Using knowledge of number bonds to mentally subtract multiples of 10 from multiples of 10 e.g. if 7 - 4 = 3 then 70 - 40 = 30

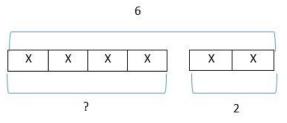

Using knowledge of number bonds to subtract mentally e.g. if 8-3=5 then 28-3=25

Use of T10 for TO-O (Target 10) 22-5=22-2 = 20-3

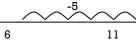
<u>or from a two-digit number</u>


Continue as in Stage 2 but with appropriate numbers e.g. 78 - 49 is the same as 78 - 50 +

6 - 2


tracks).

Pictorial -


Children to represent what they see pictorially, e.g.

Abstract -

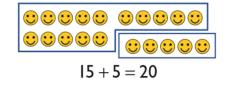
I have 11 toy cars. I lost 5 of them. How many are left?

Start with bead strings / bars and move onto number lines below.

Use the vocabulary related to subtraction and symbols to describe and record subtraction number sentences (for the example above it would be 11 - 5 = 6) Recording by - drawing jumps on prepared lines / tracks.

Use practical resources to find the difference between two small numbers (e.g. 6 and 7).

Count on from smallest to largest number to find the difference where numbers are close in value (e.g. 9 - 7).


- = signs and missing numbers(inverse)

Continue using a range of equations as in Stage 1 but with appropriate numbers.

Extend to $14 + 5 = 20 - \Box$ (inverse)

Generalisation

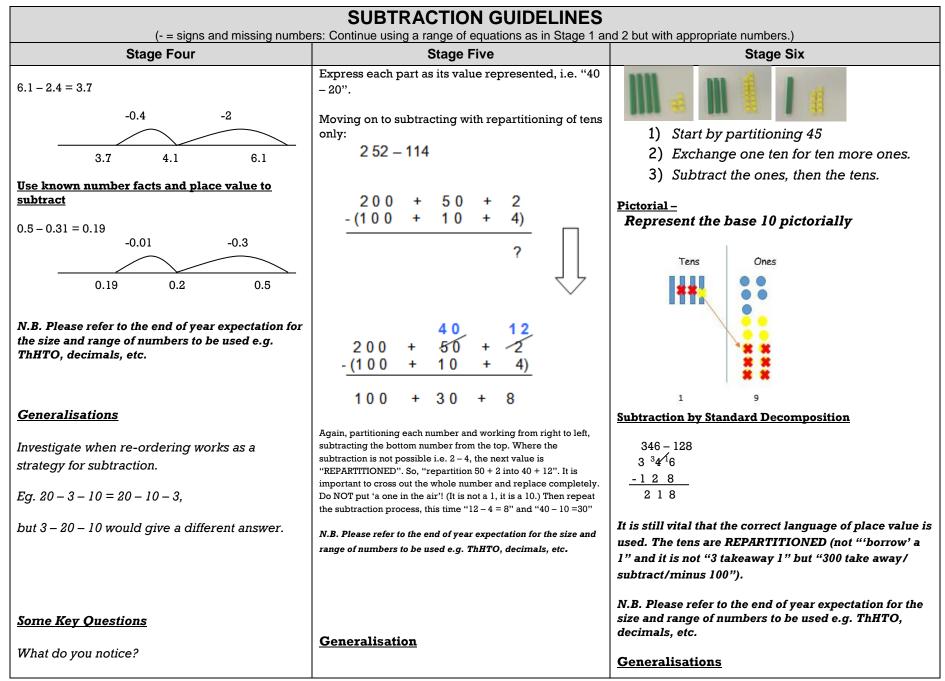
- Noticing what happens when you count in tens (the digits in the ones column stay the same)
- Odd - odd = even; odd - even = odd; etc
- show that addition of two numbers can be • done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship ٠ between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

When comparing two methods alongside each other:

What's the same?

What's different?

Look at this number in the formal method; can you see where it is in the expanded method / on the number line


	400	40 8 20 3
225 228 248 448	200	20 5
ERA!		= 225

12

	Some Key Questions]
Finding the difference (using cubes,	How many more to make?	
	How many more is than?	
Numicon or Cuisenaire rods, other objects	How much more is?	
can also be used).		
2	How many are left/left over?	
· · · · · · · · · · · · · · · · · · ·	How many fewer is than?	
	How much less is?	
	Is this true or false?	
	If I know that $7 + 2 = 9$, what else do I know? (e.g.	
?	2 + 7 = 9; $9 - 7 = 2$; $9 - 2 = 7$; $90 - 20 = 70$ etc).	
	What do you notice? What patterns can you see?	
- = signs and missing numbers(inverse)		
$7 - 3 = \Box \qquad \Box = 7 - 3$		
7 - 0 = 4 $4 = 0 - 3$		
$\square - 3 = 4 \qquad 4 = 7 - \square \qquad Expectations in$		
$\Box - \nabla = 4 \qquad 4 = \Box - \nabla \qquad \text{Yr 1, 2}$		
Some Key Questions		
How many more to make? How many more is than?		
How much more is? How many are left/left over? How		
many have gone? One less, two less, ten less How many		
fewer is than? How much less is?		
What can you see here?		
Is this true or false?		

SUBTRACTION GUIDELINES			
(- = signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)			
Stage Four Stage Five Stage Six			

SUBTRACTION GUIDELINES (- = signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)			
Stage Four	Stage Five	Stage Six	
Find a small difference by counting up (relating	Counting on	Progress to 4 digit numbers	
to inverse) e.g. 5003 – 4996 = 7 This can be modelled on an empty number line (see complementary addition). Children should be encouraged to use known number facts to reduce the number of steps.	Use of number facts to count up to find the difference (T10, T100). This is used in the context of inverse. 14 + 168 = 182 so:	Teach on a number line first to subtract using T10, T100, T1000 (children should choose the most efficient method) either counting on or counting back. e.g. 8000 – 2785 = 5215	
	468 - 286 = 182		
Use known number facts and place value to subtract 92 - 25 = 67 -5 -20 67 72 92 Counting on	$\begin{array}{c} +14 \\ +168 \\ \hline \\ 286 \\ 300 \\ 468 \end{array}$ OR 754 - 286 = 468 Expectations in Yr 3	 To make this method more efficient, the number of jumps should be reduced to a minimum through children knowing: Complements to 1, involving decimals to two decimal places (0.16 + 0.84). Complements to 10, 100 and 1000. 	
Use of number facts to count up to find the difference (T10, T100). $754 - 568 = 186$ +32 +100 +54	754 <u>- 286</u> 14 (300) <u>454</u> (754) <u>468</u>	$\begin{array}{c} \text{Yr } 4 \\ 6467 - 2684 = 3783 \\ +16 \\ +300 \\ +3467 \\ \hline \end{array}$	
568 600 700 754	Reduce the number of steps to make the calculation more efficient. <i>Extend to 2 places of decimals.</i>	2684 2700 3000 6467 OR	
For those children with a secure mental image of the number line they could record the jumps only: 754 - 568 = 186 754 - 568 32 (600)	SUBTRACTION BY EXPANDED DECOMPOSITION (With higher attainers secure in number facts and use of the number line). Subtracting with no repartitioning needed: 345 - 123 300 + 40 + 5 - (100 + 20 + 3) Expectations in Yr 3	6467 - 2684 = 3783 16 (2700) can be refined to 316 (3000) 300 (3000) 3467 (6467) <u>3467 (6467)</u> 3783 Reduce the number of steps to make the calculation more efficient. <i>Extend to 2 places of decimals.</i>	
100 (700) <u>54</u> (754)	- (100 + 20 + 3) $- 200 + 20 + 2$	Concrete:	
186 Use known number facts and place value to subtract	Partitioning each number and working from right to left, subtracting the bottom number form the top.	Column method (using base 10 and having to exchange) 45-26	
14Expectations inYr 4,5			

SUBTRACTION GUIDELINES (- = signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)				
Stage Four	Stage Five	Stage Six		
What's the same? What's different?	Sometimes, always or never true? The	Order of operations: brackets first, then		
Can you convince me?	difference between a number and its reverse will be a multiple of 9.	multiplication and division (left to right) before addition and subtraction (left to right). Children		
How do you know?	What do you notice about the differences between consecutive square numbers?	could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.		
	$\frac{\text{Investigate } a - b = (a-1) - (b-1)}{\text{represented visually}}.$	Sometimes, always or never true? Subtracting numbers makes them smaller.		
	Some Key Questions			
	What do you notice?	Some Key Questions		
	What's the same? What's different?	What do you notice?		
	Can you convince me?	What's the same? What's different?		
	How do you know?	Can you convince me?		
		How do you know?		

End of Year Objectives for Subtraction

Year 1 – mentally subtract O–O, TO–O, TO–TO (up to 20 e.g. 15 – 12).

Year 2 – mental and written- TO–O, TO–multiple of 10, TO–TO(mentally with informal jottings)

Year 3 – subtract mentally, HTO–O, HTO–T, HTO–H, TO–O and TO–TO. Formal written methods for TO–TO,

НТО-ТО, НТО-НТО.

Year 4 – as above and efficient written methods for ThHTO–ThHTO, ThHTO–HTO, O.t–O.t, &O.th–&O.th.

Year 5 – Efficient written methods for subtraction of 2 integers with more than 4 digits e.g. 45230–12432 and decimals with up to 2dp e.g. 54.34–29.78.

Year 6 – as above with increasingly larger numbers

Please note:

There are two concepts linked to subtraction:

Subtract - where it is natural to count back to 'take away'.

Find the difference – where the understanding of the vocabulary leads to using addition to count on [complementary addition].

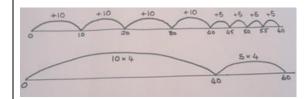
- Children should not move on to a written method if they are not completely confident with using a number line.
- Children will need to have had experience of different types of jumping on a number line e.g. T10 (target the ten), J10 (jump in 10s) and know how to partition numbers in different ways.
- These methods can also be easily applied, at different levels, to finding differences in values of money, measures and time.

Always present calculations horizontally in order to consider mental calculations first.

MULTIPLICATION GUIDELINES

Stage One	Stage Two	Stage Three
Prerequisite skills	Arrays and repeated addition	Concrete:
Multiplication is related to known facts including doubling and counting groups of the same size.		Use arrays to illustrate commutativity (counters and other objects can also be used)
		$2 \times 5 = 5 \times 2$
3+3		
E.g. use of dominoes and dice. Counting using a variety of practical resources	Looking at rowsLooking at rows3 + 32 + 2 + 22 groups of 33 groups of 2	Shatter Resistant
	2 groups of 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Pictorial:
	$3 \times 2 \text{ or } 3 + 3 \qquad \bullet \qquad \bullet$	Children to draw the arrays
Numicon and bead strings	$2 + 2 + 2$ or $2 \ge 3$	
Counting in 2s e.g. counting socks, shoes, animal's legs		
Counting in 5s e.g. counting fingers, fingers in gloves, toes	$\frac{1}{0}$ $\frac{1}{3}$ $\frac{1}{6}$ $\frac{1}{9}$ $\frac{1}{12}$	
Counting in 10s e.g. fingers, toes	If the calculation is 3 x 4 for example, children should understand that this means 3 + 3 + 3 + 3. Children should also understand the	Abstract: Children to be able to use an array to write a range of calculations e.g.
Pictures / marks	commutative law and be able to use 4 x 3.	$2 \times 5 = 10$ $5 \times 2 = 10$
	Expectations in Yr 1, 2	$3 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 and 5 + 5 = 10
There are 2 socks in a pair How many socks are there in 3 pairs?		Arrays and repeated addition
		Continue to understand multiplication as repeated addition and continue to use arrays and number lines (as in Stage 2).
Concrete:	Concrete:	
Repeated grouping/repeated addition	Use number lines to show repeated groups- e.g- 3 x 4	Use known facts and place value to carry out simple multiplications through
(does not have to be restricted to cubes)		Partition 23 x 3 =

3×4 or 3 lots of 422 22 22 Х 20 3 Shatter Resistant 3 $3 \ge 20 =$ $3 \ge 3 =$ 60 9 OR The above is required before moving on to Stage 2 **Pictorial:** X 3 = 69 2 3 Represent this pictorially alongside a number line e.g: **Pictorial:** 2 0 X 3 = 60Children to represent the practical resources in a 3 x 3 =9 picture e.g. 0 4 8 12 XX XX XX Moving on to: multiplying by 10 (EMPHASISE on XX XX XX the lay out) Abstract: 10 6 х Abstract number line Use of a bar model for a more structured method 10 $10 \ge 10 =$ $10 \ge 6 =$ $3 \times 4 = 12$ 100 60 7 7 x 10 = 7 x 6 = Abstract : <u>70</u> 42 $3 \ge 4 = 12$ 100 + 60 + 70 + 42 = 272IS SAME AS 4+4+4x = signs and missing numbers At the end of Stage 3 the children should know their 7 x 2 = 🗆 $= 2 \ge 7$ 12 x 12 times tables. $7 \ge 14$ $14 = \Box \ge 7$ Expectations in $\Box = 2 = 14$ $14 = 2 \ge 100$ $\Box \mathbf{x} \nabla = 14$ $14 = \Box \mathbf{x} \nabla$ Partitioning Children need to be secure with partitioning Generalisations numbers into 10s and 1s and partitioning in different ways: 6 = 5 + 1 so Connecting x2, x4 and x8 through multiplication facts e.g. Double 6 is the same as double five add Generalisations double one. Comparing times tables with the same times tables which is ten times bigger. If $4 \ge 3 = 12$, then we know Understand 6 counters can be arranged as 3+3 or $4 \ge 30 = 120$. Use place value counters to demonstrate 2+2+2Generalisation this. Understand that when counting in twos, the numbers Commutative law shown on array


are always even.	Repeated addition can be shown mentally on a	When they know multiplication facts up to $x12$, do
	number line	they know what x13 is? (i.e. can they use $4x12$ to work
<u>Some Key Questions</u>		out 4x13 and 4x14 and beyond?)
	Inverse relationship between multiplication and	
Why is an even number an even number?	division. Use an array to explore how numbers can	Some Key Questions
Milled de mon metice ?	be organised into groups.	
What do you notice?		What do you notice?
What's the same? What's different?		What's the same? What's different?
	Some Key Questions	
Can you convince me?		Can you convince me?
	What do you notice?	
How do you know?		How do you know?
	What's the same? What's different?	
	Can you convince me?	
	How do you know?	
MULTIPLICATION GUIDELINES	• Key language which should be used: double times, multiplied by,	the product of around of late of 'is equal to' 'is the same as'

Stage Four	Stage Five	Stage Six
x = signs and missing numbers	Partition	Grid method
Continue using a range of equations as in Stage 3 but with appropriate numbers	47 x 6 = 282	372 x 24 is approximately 400 x 20 = 8000
	$47 \ge 6 = (40 \ge 6) + (7 \ge 6) = 282$	
Partition		Extend to decimals with up to two decimal places.
Continue to use arrays:	OR	
	Use the grid method of multiplication (as below)	The recording is reduced further, with carry digits recorded below the line.
	Grid method	

Expectations in

18 x 9	72 x 38 is approximately 70 x 40 = 2800 Remember, always present calculations horizontally in order to consider mental calculations first.	38 <u>x 7</u> <u>266</u> 5
$18 \ge 9 = 162$ $18 \ge 9 = (10 \ge 9) + (8 \ge 9) = 162$	Again, if the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. 23 x 15 should not be calculated vertically. Consider use of numbers carefully. Avoid numbers which involve x 2, x	Short multiplication: 24 × 6 becomes 342 × 7 becomes 2741 × 6 becomes 2 4 3 4 2 2 7 4 1
Use <u>Multiplication array ITP</u> to model partitioning into tens and ones, using the familiar visual pattern of 5s.	4, x 5, x 8 which can be solved mentally using known facts. 382 x 23 = Yr 4, 5	$\frac{\frac{x}{1} + \frac{6}{4}}{\frac{2}{2}}$ Answer: 144 $\frac{\frac{x}{2} + \frac{7}{2}}{\frac{3}{2} + \frac{9}{4}}$ Answer: 2394 $\frac{\frac{x}{1} + \frac{6}{4} + \frac{6}{4}}{\frac{4}{2} + \frac{2}{2}}$ Answer: 16 446
Concrete: Partition to multiply (use numicon, base 10, Cuisenaire rods)	x 300 80 2 20 $20 \times 300 =$ $20 \times 80 =$ $20 \times 2 =$	Long multiplication 124 × 26 becomes
4 x 15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 1 2 1 2 4
	6000 + 1600 + 900 + 240 + 240 + 40 + 6 = 8986 6000 + 2500 + 480 + 46 = 8000+ 980 + 46 It is important to write the calculation in the grid for both the pupil and teacher to be able to identify errors made in multiplication facts or in the calculating the process.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<u>Abstract:</u> Children to be encouraged to show the steps they have taken	Use Multiplication grid ITP to assess understanding and application of the grid method by 'hiding' the question parts and 'revealing' some of the answer parts.	Note- multiplying with Tens first or by Ones
$ \begin{array}{c} 4 \times 15 \\ 10 5 \\ 10 \times 4 = 40 \\ 5 \times 4 = 20 \\ 40 + 20 = 60 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	124 × 26 becomes 1 2 4 x 2 6 7 4 4 2 4 8 0 3 2 2 4 Answer: 3224
21	X = Primary National Strategy	becomes 2 4 2 6 2 4 3224

A number line can also be used

Use the grid method of multiplication (as below)

36 x 2	27 =			stressed.	-
x 20	20 x 30=	6 20 x 6 =		Most significant first	Expectations in Yr 4, 5
7	7 x 30 =	<u>120</u> 7 x 6 = <u>42</u>		$382 \times 23 =$ $300 + 80 + 2$ $\underline{X 20 + 3}$ $6000 (20 \times 300)$ $1600 (20 \times 80)$ $40 (20 \times 2)$ $900 (3 \times 300)$ $240 (3 \times 80)$ $\underline{-6} (3 \times 2)$ 8786	$ \begin{array}{r} 300 + 80 + 2 \\ X & 20 + 3 \\ \hline 6000 \\ 1600 \\ 40 \\ 900 \\ 240 \\ \hline 8786 \end{array} $
Chilo oppo nves multi Whe	eralisations dren given the ortunity to stigate numbers iplied by 1 and 0. n they know iplication facts up to	6 1 2 + 2 9 7 0 x12, do they ki	2 0 0 2 0 2 0 2 2 2 2	$\begin{array}{r} \text{Least significant first} \\ 382 \pm 23 = \\ 300 + 80 + 2 \\ \underline{X 20 + 3} \\ 6 (3 \pm 2) \\ 240 (3 \pm 80) \\ 900 (3 \pm 300) \\ 40 (20 \pm 2) \\ 1600 (20 \pm 80) \\ \underline{6000} \\ 8786 \end{array}$	$ \begin{array}{r} 300 + 80 + 2 \\ \underline{X 20 + 3} \\ 6 \\ 240 \\ 900 \\ 40 \\ 1600 \\ \underline{6000} \\ 8786 \end{array} $

You can extend to using the grid method to multiply decimals

Expanded Column Multiplication

Children should describe what they do by referring to the actual values of the digits in the columns. For example, the first step in 382 × 23 is 'three hundreds multiplied by twenty', not 'three times two', although the relationship 3 × 2 should be stressed.

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

Understanding the use of multiplication to support conversions between units of measurement.

what x13 is? (i.e. can they use 4x12 to work		Some Key Questions
out 4x13 and 4x14 and beyond?)	<u>Generalisation</u>	
		What do you notice?
<u>Some Key Questions</u>	Relating arrays to an understanding of square	
	numbers and making cubes to show cube numbers.	What's the same? What's different?
What do you notice?		Con mon consistence mon
	Understanding that the use of scaling by multiples of	Can you convince me?
What's the same? What's different?	10 can be used to convert between units of measure	How do you know?
Can you convince me?	(e.g. metres to kilometres means to times by 1000)	
Can you convince me.	Some Key Questions	
How do you know?	some key Questions	
	What do you notice?	
	What's the same? What's different?	
	Can you convince me?	
	How do you know?	
	How do you know this is a prime number?	

End of Year Objectives for Multiplication

Year 1 – make connections between arrays, number patterns, and counting including practical problems that combine groups of 2, 5

or 10

Year 2 - represent multiplication as repeated + and arrays. Practical and informal written methods and vocabulary used to support multiplication alongside known facts and mental strategies. Understand and use '3 for free' for x and + of the 2, 5 and 10 times-tables. Year 3 – as above and, recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. Describe the effect of 0x10, T0x10, 0x100, T0 x 100. Practical and informal written methods for T0 x 0.

Year 4 – Derive and recall x and \div facts up to 12 x 12 and '3 for free' facts. Multiply numbers to 1000 by 10 and 100. Formal written layout and explain TO/HTO x O.

Year 5 – mentally multiply TO x O. Multiply whole numbers and decimals by 10, 100 and 1000. Formal written methods up to multiply ThHTO x O, ThHTO x TO, ThHTO \div O, O.t x O

Year 6 – mentally calculate TO x O, O.t X O. Formal written methods to multiply up to 4 digit by 2 digit and one digit with up to 2 decimal places, Formal written methods to divide up to 4 digit by 2 digit

DIVISION GUIDELINES - Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Stage One

Stage Two

Stage Three

<u>As with addition and subtraction, before progressing through the stages of calculation:</u>

Learning

- It is crucial to know or be able to derive key number facts:
- \Rightarrow Understand and use doubling and halving
- $\Rightarrow \times/\div 10$ (as moving a place to the left/right <u>NOT</u> "add a zero" etc.!!)
- Place value and partitioning MUST be clearly understood and explained using the appropriate mathematical vocabulary.

Teaching

- The number line and the use of arrays must be modelled as images to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. 23 x 15 should not be calculated vertically. Consider use of numbers carefully.

Always present calculations horizontally in order to consider mental calculations first.

<u>Prerequisite skills</u> (based on the practical) Understanding the language of half in different contexts.

Know halves of even numbers up to 10.

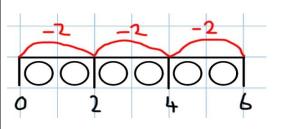
<u>Sharing</u>

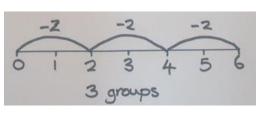
Requires secure counting skills -see counting and understanding number strand

Develops importance of one-to-one correspondence See appendix for additional information on x and \div and aspects of number

Concrete:

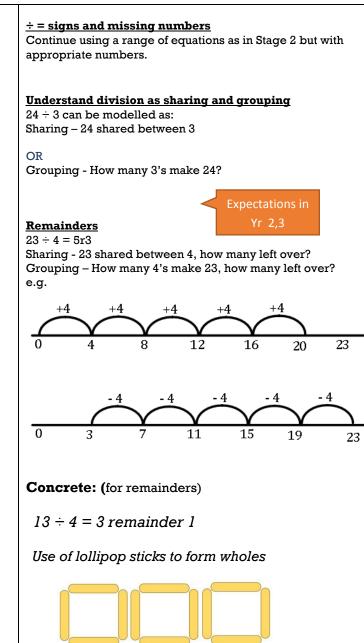
Sharing – 6 sweets are shared between 2 people. How many do they have each?


6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)


Practical activities involving sharing, distributing cards when playing a game, putting objects onto plates, into cups, hoops etc. <u>Concrete:</u> Understand division as repeated grouping and subtracting $6 \div 2$

 $\frac{-2}{0} + \frac{-2}{3} + \frac{-2}{5} + \frac{-2}{5}$

Pictorial:

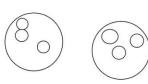


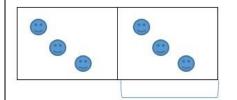
Abstract:

<u>Grouping</u>

Link to counting and understanding number strand Count up to 100 objects by grouping them and counting in

<u>Grouping</u>

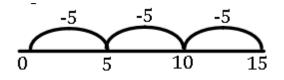

Sorting objects into 2s / 5s/ 10s etc. How many pairs of socks are there?


There are 10 bulbs. Plant 5 in each pot. How many pots are there?

Jo has 10 Lego wheels. How many bicycles can she make?

Pictorial:

This can also be done in a bar so all 4 operations have a similar structure:


tens, fives or twos;...

Find one half, one quarter and three quarters of shapes and sets of objects

- 15 ÷ 5 can be modelled as:
- $15 \div 5$ call be modelled a
- There are 15 strawberries.

How many people can have 5 each? How many 5s make 15?

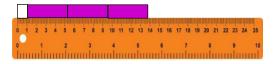
 $15\div 5$ can be modelled as repeated subtraction

In the context of money count forwards and backwards using 2p, 5p and 10p coins

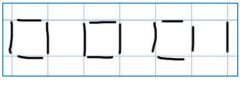
Practical grouping e.g. in PE

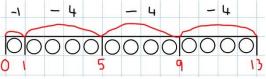
12 children get into teams of 4 to play a game. How many teams are there?

Children should know that division is not commutative.

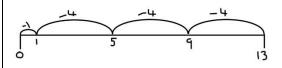

\div = signs and missing numbers

Generalisations


6 ÷ 2 = □	$\Box = 6 \div 2$	
6 ÷ □ = 3	3 = 6 ÷ □	Expectations in
□ ÷ 2 = 3	$3 = \Box \div 2$	Yr 1, 2.
$\Box \div \nabla = 3$	$3 = \Box \div \nabla$,


Noticing how counting in multiples if 2, 5 and 10 relates

Use of Cuisenaire rods and rulers (using repeated subtraction)



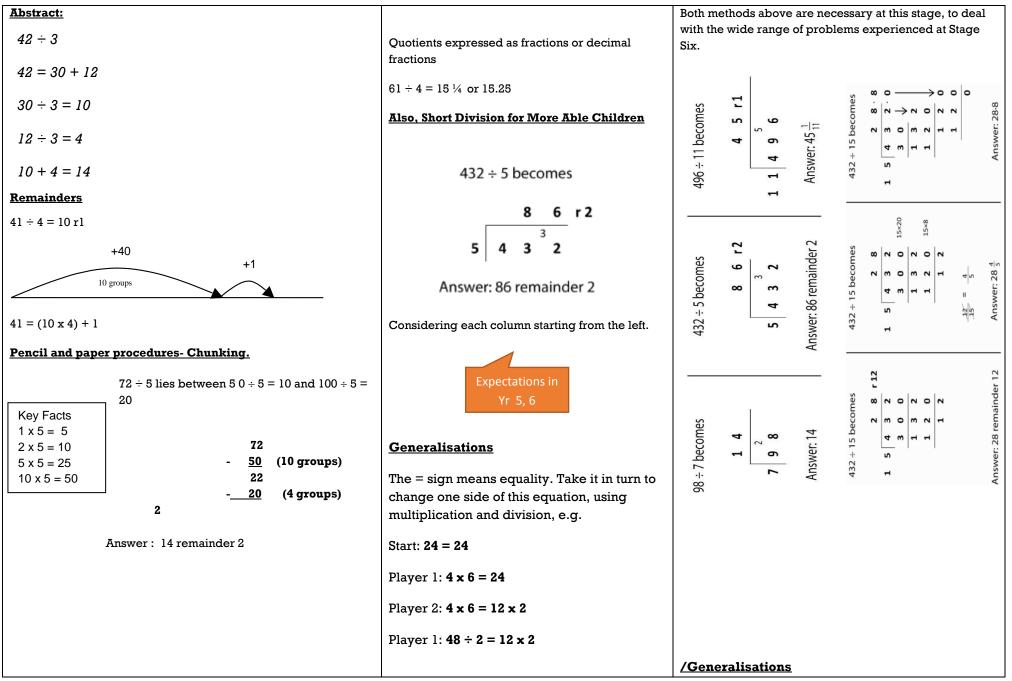
Pictorial:

<u>Abstract:</u>

Generalisations

Inverses and related facts – develop fluency in finding related multiplication and division facts.

Develop the knowledge that the inverse relationship


Generalisations

- True or false? I can only halve even numbers.
- Grouping and sharing are different types of

problems. Some problems need solving by grouping and some by sharing. Encourage children to practically work out which they are doing.	to the number of groups you have counted (introducing times tables) An understanding of the more you share between, the less each person will get (e.g. would you prefer to share these grapes between 2 people or 3 people? Why?)	can be used as a checking method. <u>Some Key Questions</u> Questions in the context of money and measures that
Some Key Questions How many groups of?	Secure understanding of grouping means you count the number of groups you have made. Whereas sharing means you count the number of objects in each group.	involve remainders (e.g. How many lengths of 10cm can I cut from 81cm of string? You have £54. How many £10 teddies can you buy?)
How many in each group?		What is the missing number? $17 = 5 \times 3 + $
Share equally into	Some Key Questions	$= 2 \times 8 + 1$
What can do you notice?	How many 10s can you subtract from 60?	
	I think of a number and double it. My answer is 8. What was my number?	
	If $12 \ge 2 = 24$, what is $24 \div 2$?	
	Questions in the context of money and measures (e.g. how many 10p coins do I need to have 60p? How many 100ml cups will I need to reach 600ml?)	

DIVISION GUIDELINES - Key language which should be used: share, group, divide, divided by, half, 'is equal to' is the same as'

Stage Four	Stage Five	Stage Six
÷ = signs and missing numbers	Sharing and grouping	Sharing, grouping and remainders as Stage Five
Continue using a range of equations as in Stage 3 but with appropriate numbers.	Continue to understand division as both sharing and grouping (repeated subtraction).	Pencil and paper procedures- Chunking 977 ÷ 36 is approximately 1000 ÷ 40
Sharing and grouping	615 ÷ 5	= Key Facts 1 x 36 = 36
60 ÷ 12 can be modelled as: grouping – 12 subtracted repeatedly from 60 on a no. line,	н т ° ©© ©© ©© ©© •••••••••••••••••••••	977 - $\underline{720}$ 36 x 20 257 - 180 36 x 5 $2 \times 36 = 72$ $5 \times 36 = 180$ $10 \times 36 = 360$
leading to subtracting 'groups' of 12. sharing – sharing among 12, the number given to each person.	Step 2: Circle your GO GO GO GO GO GO GO GO GO GO	77 - <u>72</u> 36 x 2 5
<u>Concrete</u> :		Answer: 27 ⁵ / ₃₆
Sharing using place value counters. 42 ÷ 3= 14 1. Make 42. Share the 4 tens between 3. Can we make an exchange with the extra 10? Exchange the ten for 10 ones and share out 12 ones	Image: step 3: Exchange 1H for 10T and circle groups of 5 Image: step 4: exchange 1T for 10 ones and circles groups of 5 Image: step 5: ste	Pencil and Paper procedures- Short Division Method quotient divisor 5 847 dividend Expectations in Yr 5, 6 Expectations in Yr 3, 4 Comes
Pictorial:	Pencil and paper procedures- Chunking 256 \div 7 lies between 210 \div 7 = 30 and 280 \div 7 = 40 Key Facts 256 1 x 7 = 7 - 210 7 x 30 2 x 7 = 14 46 5 x 7 = 35 - 42 7 x 6 10 x 7 = 4 Answer: 36 remainder 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Generalisations

True or false? Dividing by 10 is the same as dividing by 2 and then dividing by 5. Can you find any more rules like this?

Is it sometimes, always or never true that $\Box \div \Delta = \Delta \div \Box$?

Inverses and deriving facts. 'Know one, get lots free!' e.g.: $2 \ge 3 = 6$, so $3 \ge 2 = 6$, $6 \div 2 = 3$, $60 \div 20 = 3$, $600 \div 3 = 200$ etc.

Some Key Questions

Sometimes, always, never true questions about multiples and divisibility. <u>(When looking at the examples on this</u> <u>page, remember that they **may not** be 'always true'!)</u> E.g.:

- Multiples of 5 end in 0 or 5.
- The digital root of a multiple of 3 will be 3, 6 or 9.
- The sum of z` 4 even numbers is divisible by 4.

Some Key Questions

<u>Sometimes, always, never true questions</u> about multiples and divisibility. E.g.:

• If the last two digits of a number are divisible by 4, the number will be divisible by 4.

When you square an even number the result will be divisible by 4 (one

example of 'proof' shown left)

If the digital root of a

number is 9, the

number will be

divisible by 9.

- Some Key Questions

Sometimes, always, never true questions about multiples and divisibility. E.g.: If a number is divisible by 3 and 4, it will also be divisible by 12.

Using what you know about <u>rules of divisibility</u>, do you think 7919 is a prime number? Explain your answer.

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

End of Year Objectives for Division

Year 1 – practical problems that share into equal groups of 2, 5 or 10.

Year 2 – derive and recall division facts for 2, 5 or 10, represent division as repeated subtraction (grouping) and sharing. Practical and informal written methods and vocabulary used to support division, including remainders. To know that division is not commutative.

Year 3 - Practical and informal written methods for TO÷O. Understand and use '3 for free' for x and ÷ of the 2, 3, 4, 5, 6, 8 and 10 times-tables. Round remainders up or down, depending on the context.

Year 4 – Derive and recall x facts up to 12x12 and apply '3 for free' facts. Divide numbers to 1000 by 10 and 100. Develop and use formal written layouts to record.

Year 5 – Divide whole numbers and decimals by 10, 100 and 1000. Divide numbers up to 4 digits by a one digit number using the formal written methods for division and interpret remainders appropriately for the context.

Year 6 – Divide numbers up to 4 digits by a 2 digit whole number using the formal written method of long division interpreting remainders as fractions, decimals, etc. Divide numbers up to 4 digits by a two digit number using the formal written methods for division and interpret remainders appropriately for the context.

Learning

- It is crucial to know or be able to derive key number facts:
 - \Rightarrow Understand and use doubling and halving
 - \Rightarrow ×/÷ 10 (as moving a place to the left/right <u>NOT</u> "add a zero" etc.!!)
- Place value and partitioning MUST be clearly understood and explained using the appropriate mathematical vocabulary.

Teaching

- The number line and the use of arrays must be modelled as images to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. $24 \div 3$ should not be calculated using short division. Consider use of numbers carefully.

Always present calculations horizontally in order to consider mental calculations first.