Calculation Policy Manford Primary School

Believe in Yourself

INTRODUCTION;

This calculation policy, taken from the new National Curriculum for Mathematics, has been written in line with the programmes of study. It provides guidance on appropriate calculation methods and progression. The content is set out in stages under the following headings: addition, subtraction, multiplication and division.

AIMS OF THE POLICY:

- To ensure consistency and progression in our approach to calculation
- To ensure that children develop efficient, reliable and formal written methods of calculation for all operations
- To ensure that children can use these methods fluently with confidence and understanding

HOW TO USE THIS POLICY:

Under the 2014 National Curriculum, 'pupils should be fluent in written methods for all four operations', including applying these skills with more than 4 digit numbers. Therefore, we are working towards ALL children having a grasp of these methods, with a conceptual understanding of how the method works and what the stages mean.

- Use the policy as the basis of your planning but ensure you use previous or following years' guidance to allow for personalised learning (Learning without Limits).
- Always use AfL to identify suitable next steps in calculation for groups of children.
- If, at any time, children are making significant erroxs, return to the previous stage in calculation.
- Always use suitable resources, models and images to support children's understanding of calculation and place value, as appropriate. The list of resources is not exhaustive and the policy doesn't recommend using one set of resources - rather can be supplemented with a variety of resources, which work for your class.
- For each of the four arithmetic rules, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Make it, Draw it, Write it] is for children to have a true understanding of a mathematical concept; children should master all three phases within a year group's scheme of work.
- Generalisations and key questions at the end of each stage supports teacher assessment.
- Expectations for each year group are listed in bold at the end of each section.

This policy is purposely set out as a progression of mathematical skill. The focus must always remain on the breadth and depth of mathematics, rather than accelerating through concepts, in order to deepen their conceptwal understanding by tackling challenging varied problems.

ADDITION GUIDELINES - Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is'		
Stage One	Stage Two	Stage Three
Prerequisite skills (based on the practical) Counting numbers to 20 (using familiar / practical resources) Place numbers to 20 in order Teaching concrete, pictorial and abstract alongside: Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc.) Concrete - Pictorial - Abstract - $4+3=7$ (four is a part, 3 is a part and the whole is seven)	Prerequisite skills (based on the practical) Relate number bonds to 10 to add multiples of 10 up to a total of 100 e.g. if $3+4$ is 7 then $30+40$ is 70 Use familiar objects to recognise the place value of 2 digit numbers. $\begin{array}{l\|l} 3 & 4 \end{array}$ Recognise and explain 34 is ' 3 tens and 4 ones' Progressing to: PARTITIONING AND RECOMBINING Partition into tens and ones and recombine $\begin{aligned} 15+23 & =10+5+20+3 \\ & =30+8 \\ & =38 \end{aligned}$ Model this on a bead bar and practise on 100-beadstrings, showing the 'collection' of 10 s and then the ones. i.e. " 2 tens and 1 ten makes 3 tens, which is 30 . Then 3 and 2 makes 5 ones. Altogether we can see 3 tens and 5 ones, which is 35." Check by counting in tens and ones along the bead bar. Model and practise	Partition into tens and ones - Partition one number and recombine. - Count on by partitioning the second number only e.g. $\begin{aligned} 36+53 & =53+30+6 \\ & =83+6 \\ & =89 \end{aligned}$ As modelled below as necessary Children need to be secure adding multiples of 10 to any two-digit number including those that are not multiples of 10 . $48+36=84$ First J10 then T10 Add a near multiple of 10 to a two-digit number (Overjumping - OI) Secure mental methods by using a number line to model the method. Continue as in Stage 2 but with appropriate numbers

ADDITION GUIDELINES - Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is'

Stage One

Bonds up to 10 and to make 10

1 more than a number

Addition as combining groups

$$
1,2,3,4,5,6,7
$$

Addition as counting on

Doubling numbers within 20

Number bonds to 20

$+/=$ signs and missing numbers

Model this on a number line starting at 23 and jumping 10 (J10) to make 33 and then add 2 in one jump.

The Empty Number Line:
T10 (Targeting the 10, partitioning and bridging through 10)
The steps in addition often bridge through a multiple of 10
e.g.

Children should be able to partition the 7 to relate adding the 2 first to target the 10 and then the 5 .
$8+7=15$
$+2+5$

+ / = signs and missing numbers

Continue using a range of equations as in Stage 1 but with appropriate, larger numbers.
Extend to

Stage Three

E.g. $35+19$ is the same as $35+20-1$.

Once a child is able to add 3 digit numbers on a number line securely move on to vertical expansion.

$+/=$ signs and missing numbers

Continue using a range of equations as in Stage 1 and 2 but with appropriate, larger numbers.

Concrete -

TO + TO using base 10. Continue to develop understanding of partitioning and place value and use this to support addition. Begin with no exchanging. $36+25$

ADDITION GUIDELINES - Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is'

Stage One

Children need to understand the concept of equality before using the ' $=$ ' sign. Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.
$2=1+1$
$2+3=4+1 \quad 3=3 \quad 2+2+2=4+2$
Missing numbers need to be placed in all possible places.

$3+4=\square$	$\square=3+4$			
$3+\square=7$	7	$=\square+4$		
$\square+4=7$	7	$=3+\square$		
$\square+\nabla=7$	7	$=\square+\nabla$	\quad	Expectations in
:---:				

Children to develop an understanding of equality e.g

$$
6+\square=11 \text { and } 6+5=5+\square \quad 6+5=\square+4
$$

The Number Line

Children use a numbered line to count on in ones. Children use number lines and practical resources to support calculation and teachers model the use of the number line.
e.g. 7+4:

Concrete -

Counting on using number lines by using cubes or Numicon.

Concrete-
$41+8$

$$
1+8=9
$$

$$
40+9=49
$$

$24+5=20+\square$
and
$32+\square+\square=100 \quad 35=1+\square+5$

Concrete -

TO + O using base 10. Continue to develop understanding of partitioning and place value.
e.g-41+8

Pictorial -

Children to represent the concrete using a particular symbol e.g. lines for tens and dot/crosses for ones.

Pictorial -

This could be done one of two ways:

Generalisation

- Noticing what happens when you count in tens (the digits in the ones column stay the same)
- Odd + odd = even; odd + even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

ADDITION GUIDELINES - Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is'

Stage One

Pictorial - A bar model which encourages the children to count on.

The abstract number line -

What is 2 more than 4 ? What is the sum of 4 and 2 ? What's the total of 4 and 2 ? $4+2$

Number line Teaching Points:

Always work with numbers reading from left to right (smallest to largest), whatever the operation of the calculation.
Numbers ('landmarks') are written below the line. Size of the 'jumps' are written above the 'jumps'.

Generalisations

- True or false? Addition makes numbers bigger.
- True or false? You can add numbers in any order and still get the same answer.

Some Key Questions

How many altogether? How many more to make...? I add ...more. What is the total? How many more is... than...? How much more is...? One more, two more, ten more...
What can you see here?
Is this true or false?
What is the same? What is different?

Generalisation

- Noticing what happens when you count in tens (the digits in the ones column stay the same)
- Odd + odd = even; odd + even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

Some Key Questions

How many altogether? How many more to make...? How many more is... than...? How much more is.. ?
Is this true or false?
If I know that $17+2=19$, what else do I know? (e.g. $2+17=19 ; 19$ $-17=2 ; 19-2=17 ; 190-20=170$ etc).
What do you notice? What patterns can you see?

Some Key Ouestions

How many altogether? How many more to
make...? How many more is... than...? How much more is...?
Is this true or false?

If I know that $17+2=19$, what else do I know? (e.g. $2+17=19 ; 19-17=2 ; 19-2=17 ; 190-20$ $=170$ etc).
What do you notice? What patterns can you see?

ADDITION GUIDELINES

Stage Four
Concrete-
Use of place value counters to add HTO + TO, HTO + HTO

Pictorial -

Children to represent the counters e.g. like the image below

If the children are completing a word problem, draw a bar model to represent what it's asking them to do

$?$	
243	368

Stage Five

It is crucial to know or be able to derive key number facts TO + TO mentally or with jottings before progressing to Stage Five.

Adding the least significant digits first
$+176$
13 (7+6)

```
Expectations in
```


$110(40+70)$

423
Working from left to right:
'Read' the answer from left to right, using knowledge of place value and referring to the value of each digit i.e.:"four hundred and twenty three" NOT adding up columns for the final answer

Moving on to

247
$+\underline{376}$ (without use of brackets)
13
110
500
623
Moving on to a compact method 247
$+376$
$\underline{623}$ Expectations in 11

Yr 3

Stage Six
Extend to numbers with at least four digits
$3587+675=4262$
3587
$+675$
$\frac{4262}{111}$
Expectations in
Yr 4, 5

Revert to expanded methods if the children experience any difficulty.

Partition into hundreds, tens, ones and decimal

 fractions and recombineEither partition both numbers and recombine or partition the second number only e.g.
$35.8+7.3=35.8+7+0.3$

$$
=42.8+0.3
$$

$$
=43.1
$$

Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits).

$$
\begin{array}{r}
72.8 \\
+\quad 54.6 \\
\hline 127.4
\end{array}
$$

Partition into hundreds, tens and ones and recombine

Either partition both numbers and recombine or partition the second number only e.g
$358+73=358+70+3$
$=428+3$
$=431$

Horizontal Expansion

$367+185=552$

552

Moving on to

$367+185=552$
367 (without use of brackets)
$+\underline{185}$
400
140
12
Why most significant digit first and then least significant digit first? When adding and subtracting on a number line we start with the most significant digit first (e.g. add the tens then add the units). This is why horizontal expansion starts with the most significant digit first. Once the children are secure in this, it changes to adding the least significant digit first. This bridges the gap between these two stages (many children will only need to see it a few times to understand the relationship but others may need more experience at each stage.

Generalisations

Investigate when re-ordering works as a strategy for subtraction.

Partition the 13 into 10 and 3, 'carry' the ten into the tens column, writing it as l to represent one ten." N.B. the ' 1 ' can be written at the bottom of the calculation. It is NOT "carry the 1 "

$+/=$ signs and missing numbers

Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.
N.B. Please refer to the end of year expectation for the size and range of numbers to be used e.g. ThHTO, decimals, etc.

Generalisation

Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9.

What do you notice about the differences between consecutive square numbers?
Investigate $\mathrm{a}-\mathrm{b}=(\mathrm{a}-1)-(\mathrm{b}-1)$
represented visually.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
decimals with up to 3 places
$13.86+9.481=23.341$

Revert to expanded methods if the children experience any difficulty.

+/ = signs and missing numbers

Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.
N.B. Please refer to the end of year expectation for the size and range of numbers to be used e.g. ThHTO, decimals, etc.

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

Sometimes, always or never true? Subtracting numbers makes them smaller.

Some Key Questions

What do you notice?

Stage One	Stage Two		Stage Three
What do you notice? Prexequisiserakplisjheqeedfertha?practical)	There	are two concepts linked to subtraction:	How do you know? Use known number facts and place value
Can you convince me? How do you know?			

Yrl - recall and jottings for O+O, T+O, T+T, TO+O (within 20 including 0)
Yr2 - TO $\mathbf{~ O}, \mathbf{T}+\mathbf{T O}, \mathbf{T O}+\mathbf{T O}, \mathbf{O + O + O}$
Yr3 - mental methods for HTO + O, HTO+T, HTO+H; written methods for HTO+TO, HTO+HTO
Yr4 - written methods as above and ThHTO+ThHTO, O.t+O.t, £O.th+£O.th
Yr5 - written method for addition of numbers with more than four digits; 2 or more integers, decimals with 2dp e.g. 29.78 + 54.34

Yr6 - As above using increasingly larger numbers

Differentiation Steps for each Stage:

- Not crossing tens
- Crossing Tens
- Crossing Hundreds Only
- Crossing Tens and Hundreds

In addition:

- The number line must be modelled as an image to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation can be carried out mentally then do not give it to practice vertical calculation, e.g. TO + TO should not be calculated vertically.

Always present calculations horizontally in order to consider mental calculations.

Number bonds to 10

Counting back from 20. Find one less than a given number.

Subtract using quantities and objects 2 single digit
 numbers.

Count back to subtract single digit numbers.

(1)2345678910

There are two concepts linked to subtraction:
Subtract - where it is natural to count back to 'take away'.

Find the difference - where the understanding of the vocabulary leads to using addition to count on [complementary addition].

Understand subtraction as 'take away'.

Concrete-

Physically taking away and removing objects
from a whole (use various objects too). Rather than crossing out, children will physically remove

Subtract - where it is natural to count back to 'take away'.
Find the difference - where the understanding of the vocabulary leads to using addition to count on [complementary addition].

Making 10 (using Numicon or ten frames)

$$
14-5
$$

Children could also do this by subtracting a 5 from the 10 .

Use known number facts and place value to subtract
Using knowledge of number bonds to subtract mentally from multiples of 10s e.g. 30-4

Expectations in

Yr 2,3

Using knowledge of number bonds to mentally subtract multiples of 10 from multiples of 10 e.g. if $7-4=3$ then $70-40=30$

Using knowledge of number bonds to subtract mentally e.g. if $8-3=5$ then $28-3=25$

Use of T10 for TO-O (Target 10)
$22-5=22-2$
$=20-3$

to subtract

Continue as in Stage 2 but with appropriate numbers e.g. 197-53 = 144

Secure knowledge in use of J10 and T10 to

 count back and find the difference.TO-TO, HTO-TO, HTO-HTO
By the end of this stage children should know complements to 100. They can then use this knowledge to calculate HTO-TO, HTO-HTO.

Expectations in
Yr 3

Subtract mentally a 'near multiple of 10' to or from a two-digit number

Continue as in Stage 2 but with appropriate numbers e.g. 78-49 is the same as 78-50 +

tracks).

Pictorial -

Children to represent what they see pictorially, e.g.

6

Abstract -

I have 11 toy cars. I lost 5 of them. How many are left?
Start with bead strings / bars and move onto number lines below.

Use the vocabulary related to subtraction and symbols to describe and record subtraction number sentences (for the example above it would be $11-5=6$)
Recording by - drawing jumps on prepared lines / tracks.
Use practical resources to find the difference between two small numbers (e.g. 6 and 7).

Count on from smallest to largest number to find the difference where numbers are close in value (e.g. 9-7)

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

7-3=\square }\square=7-
7-3=\square }\square=7-
7-\square=4 [4=\square-3 [Expectations in
7-\square=4 [4=\square-3 [Expectations in
-
-

Some Key Questions

How many more to make...? How many more is... than...? How much more is...? How many are left/left over? How many have gone? One less, two less, ten less... How many fewer is... than...? How much less is...?

What can you see here?
Is this true or false?

Some Key Questions

How many more to make...?
How many more is... than...?
How much more is...?
How many are left/left over?
How many fewer is... than...?
How much less is...?
Is this true or false?
If I know that $7+2=9$, what else do I know? (e.g $2+7=9 ; 9-7=2 ; 9-2=7 ; 90-20=70$ etc). What do you notice? What patterns can you see?

SUBTRACTION GUIDELINES

(- = signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)
Stage Four \quad Stage Five \quad Stage Six

SUBTRACTION GUIDELINES

($-=$ signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)

Stage Four
Find a small difference by counting up (relating to inverse) e.g. $5003-4996=7$ This can be modelled on an empty number line (se complementary addition). Children should be encouraged to use known number facts to reduce the number of steps.
Use known number facts and place value to
$\frac{\text { subtract }}{92-25=67}$

Counting on

Use of number facts to count up to find the difference (T10, T100). $754-568=186$

For those children with a secure mental image of the number line they could record the jumps only:
$754-568=186$

754

-568

```
Expectations in
Yr 3, 4
```

32 (600)
100 (700)
54 (754)
186

Use known number facts and place value to subtract

Expectations in Yr 4,5

Progress to 4 digit numbers

Teach on a number line first to subtract using T10, T100, T1000 (children should choose the most efficient method) either counting on or counting back.
e.g. $8000-2785=5215$

To make this method more efficient, the number of jumps should be reduced to a minimum through children knowing:

- Complements to 1 , involving decimals to two decimal places $(0.16+0.84)$.
- Complements to 10,100 and 1000.

OR
$754-286=468$
754

- 286

14 (300)
454 (754)
468
Reduce the number of steps to make the calculation more efficient.
Extend to 2 places of decimals.

SUBTRACTION BY EXPANDED

DECOMPOSITION (With higher attainers secure
in number facts and use of the number line).
Subtracting with no repartitioning needed:

$345-123$
$300+40+5$
$-(100+20+3)$
$200+20+2$

Expectations
 in Yr 3

 to left, subtracting the bottom number form the top.

Reduce the number of steps to make the calculation more efficient.
Extend to 2 places of decimals.

Concrete:

Column method (using base 10 and having to exchange) 45-26

SUBTRACTION GUIDELINES

(- = signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)

Use known number facts and place value to subtract

$0.5-0.31=0.19$

N.B. Please refer to the end of year expectation for the size and range of numbers to be used e.g. ThHTO, decimals, etc.

Generalisations

Investigate when re-ordering works as a strategy for subtraction.

Eg. $20-3-10=20-10-3$,
but 3-20-10 would give a different answer.

Some Key Questions

What do you notice?

Express each part as its value represented, i.e. " 40 - 20".

Moving on to subtracting with repartitioning of tens only:
$252-114$
$200+50+2$
$-(100+10+4)$
?

$100+30+8$

Again, partitioning each number and working from right to left, subtracting the bottom number from the top. Where the subtraction is not possible i.e. $2-4$, the next value is "REPARTITIONED". So, "repartition $50+2$ into $40+12$ ". It is important to cross out the whole number and replace completely Do NOT put 'a one in the air'! (It is not a 1 , it is a 10 .) Then repeat the subtraction process, this time " $12-4=8$ " and " $40-10=30$ "
N.B. Please refer to the end of year expectation for the size and range of numbers to be used e.g. ThHTO, decimals, etc.

Generalisation

Stage Six
1111

1) Start by partitioning 45
2) Exchange one ten for ten more ones.
3) Subtract the ones, then the tens.

Pictorial -

Represent the base 10 pictorially

Subtraction by Standard Decomposition

$$
\begin{gathered}
346-128 \\
3^{3} 4{ }^{1} 6 \\
-128 \\
\hline 218
\end{gathered}
$$

It is still vital that the correct language of place value is used. The tens are REPARTITIONED (not "'borrow' a 1" and it is not "3 takeaway 1" but "300 take away/ subtract/minus 100 ").
N.B. Please refer to the end of year expectation for the size and range of numbers to be used e.g. ThHTO, decimals, etc.

Generalisations

SUBTRACTION GUIDELINES (- = signs and missing numbers: Continue using a range of equations as in Stage 1 and 2 but with appropriate numbers.)		
Stage Four	Stage Five	Stage Six
What's the same? What's different? Can you convince me? How do you know?	Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9 . What do you notice about the differences between consecutive square numbers? Investigate $\mathrm{a}-\mathrm{b}=(\mathrm{a}-1)-(\mathrm{b}-1)$ represented visually. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?	Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering. Sometimes, always or never true? Subtracting numbers makes them smaller. Some Key Questions What do you notice? What's the same? What's different? Can you convince me? How do you know?

End of Year Objectives for Subtraction

Year 1 - mentally subtract O-O, TO-O, TO-TO (up to 20 e.g. 15-12).
Year 2 - mental and written- TO-O, TO-multiple of 10, TO-TO(mentally with informal jottings)
Year 3 - subtract mentally, HTO-O, HTO-T, HTO-H, TO-O and TO-TO. Formal written methods for TO-TO, НTO-TO, HTO-HTO.
Year 4 - as above and efficient written methods for ThHTO-ThHTO, ThHTO-HTO, O.t-O.t, £O.th-£O.th.
Year 5 - Efficient written methods for subtraction of 2 integers with more than 4 digits e.g. 45230-12432 and decimals with up to 2dp e.g. 54.34-29.78.
Year 6 - as above with increasingly larger numbers

Please note:
There are two concepts linked to subtraction:
Subtract - where it is natural to count back to 'take away'.
Find the difference - where the understanding of the vocabulary leads to using addition to count on [complementary addition].

- Children should not move on to a written method if they are not completely confident with using a number line.
- Children will need to have had experience of different types of jumping on a number line e.g. T10 (target the ten), J10 (jump in

10s) and know how to partition numbers in different ways.

- These methods can also be easily applied, at different levels, to finding differences in values of money, measures and time.

Always present calculations horizontally in order to consider mental calculations first.

MULTIPLICATION GUIDELINES

	Stage O
Prerequisite skills Multiplication is related to kno doubling and counting groups	

E.g. use of dominoes and dice.

Counting using a variety of practical resources

Numicon and bead strings

Counting in 2s e.g. counting socks, shoes, animal's legs...

Counting in 5 s e.g. counting fingers, fingers in gloves, toes...

Counting in 10s e.g. fingers, toes...

Pictures / marks

There are 2 socks in a pair How many socks are there in 3 pairs?

Concrete:

Repeated grouping/repeated addition

(does not have to be restricted to cubes)

If the calculation is $3 x 4$ for example, children should understand that this means $3+3+3+3$. Children should also understand the commutative law and be able to use 4×3.

Expectations in
Yr 1, 2

Concrete:

Use number lines to show repeated groups-e.g- 3×4

Concrete:

Use arrays to illustrate commutativity (counters and other objects can also be used)

$2 \times 5=5 \times 2$

Pictorial:

Children to draw the arrays

Abstract:

Children to be able to use an array to write a range of calculations e.g.
$2 \times 5=10$
$5 \times 2=10$

$$
2+2+2+2+2=10 \text { and } 5+5=10
$$

Arrays and repeated addition

Continue to understand multiplication as repeated addition and continue to use arrays and number lines (as in Stage 2).

Use known facts and place value to carry out simple multiplications through

Partition

$23 \times 3=$

The above is required before moving on to Stage 2

Pictorial:

Children to represent the practical resources in a picture e.g.
XX XX XX
XX XX XX

Use of a bar model for a more structured method

Abstract:

$3 \times 4=12$

IS SAME AS $4+4+4$

Generalisations

Understand 6 counters can be arranged as 3+3 or $2+2+2$

Understand that when counting in twos, the numbers

Pictorial:

Represent this pictorially alongside a number line e.g:

Abstract:

Abstract number line

$$
3 \times 4=12
$$


```
x = signs and missing numbers
```

$$
7 \times 2=\square
$$

$$
7 \times \square=14
$$

$$
\square \mathrm{x} 2=14
$$

$$
\square \mathrm{x} \nabla=14
$$

```
\(\square=2 \times 7\)
```



```
\(14=\square \mathrm{x} \nabla\) Yr 1, 2
```


Partitioning

Children need to be secure with partitioning numbers into 10 s and ls and partitioning in different ways: $6=5+1$ so
e.g. Double 6 is the same as double five add double one

Generalisation

Commutative law shown on array

X	20	3
3	$3 \times 20=$	$3 \times 3=$
	$\underline{60}$	$\underline{9}$

OR

$3 \times 3=9$

Moving on to: multiplying by 10 (EIMPHASISE on

the lay out)
\times
10
10
$\underline{100}$
7

At the end of Stage 3 the children should know their 12×12 times tables.

Generalisations

Connecting $x 2, x 4$ and $x 8$ through multiplication facts
Comparing times tables with the same times tables which is ten times bigger. If $4 \times 3=12$, then we know $4 \times 30=120$. Use place value counters to demonstrate this.

$18 \times 9=162$
$18 \times 9=(10 \times 9)+(8 \times 9)=162$
Use Multiplication array ITP to model partitioning into tens and ones, using the familiar visual pattern of 5 s .

Concrete: Partition to multiply (use numicon, base 10 , Cuisenaire rods)
4×15

Abstract: Children to be encouraged to show the steps they have taken
4×15
$10 \times 4=40$
$5 \times 4=20$
$40+20=60$
\downarrow

05
72×38 is approximately $70 \times 40=2800$
Remember, always present calculations horizontally in order to consider mental calculations first.

Again, if the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. 23 x 15 should not be calculated vertically. Consider use of numbers carefully. Avoid numbers which involve x 2 , x 4 , $x 5, x 8$ which can be solved mentally using known facts.

$382 \times 23=$
\mathbf{x} $\mathbf{3 0 0}$ $\mathbf{8 0}$ $\mathbf{2}$ $\mathbf{2 0}$ $20 \times 300=$ $20 \times 80=$ $20 \times 2=$ $\underline{6000}$ $\underline{1600}$ $\underline{40}$ $\mathbf{3}$ $3 \times 300=$ $3 \times 80=$ $\underline{3 \times 2}=$ $\underline{900}$ $\underline{240}$ $\underline{6}$

$6000+1600+900+240+240+40+6=8986$
$6000+2500+480+46=8000+980+46$

It is important to write the calculation in the grid for both the pupil and teacher to be able to identify errors made in multiplication facts or in the calculating the process.

Use Multiplication grid ITP to assess understanding and application of the grid method by 'hiding' the question parts and 'revealing' some of the answer parts.

38 7

Short multiplication:

Long multiplication

124×26 becomes
12
124
$\times \quad 26$
$\begin{array}{lll}7 & 4 & 4\end{array}$

2	4	8	0
3	2	2	4

Answer: 3224

Note- multiplying with Tens first or by Ones

Use the grid method of multiplication (as below)
$36 \times 27=$

\mathbf{x}	30	6
$\mathbf{2 0}$	$20 \times 30=$	$20 \times 6=$
	$\underline{600}$	$\underline{120}$
$\mathbf{7}$	$7 \times 30=$	$7 \times 6=$
	$\underline{\mathbf{2 1 0}}$	$\underline{42}$

Expectations in
Yr 3,4

Generalisations

Children given the opportunity to investigate numbers multiplied by l and 0

When they know

multiplication facts up to $x 12$, do they know

You can extend to using the grid method to multiply decimals

Expanded Column Multiplication

Children should describe what they do by referring to the actual values of the digits in the columns. For example, the first step in 382×23 is 'three hundreds multiplied by twenty', not 'three times two', although the relationship 3×2 should be stressed.

Most significant firs

$382 \times 23=$

$300+80+2$			$300+80+2$	
X	$20+$		X	$20+3$
	6000	(20 x 300)		6000
	1600	(20 x 80)		1600
	40	(20x2)		40
	900	(3 x 300)		900
	240	(3 $\times 80$)		240
	6	(3x2)		6

Least significant first

$382 \times 23=$	$\begin{aligned} & 300+80+2 \\ & \times \quad 20+3 \\ & \hline \end{aligned}$
$300+80+2$	6
X $20+3$	240
6 (3x2)	900
240 (3x80)	40
900 (3 x 300)	1600
40 (20 x 2)	6000
1600 (20 x 80)	8786
6000 (20 x 300)	
8786	

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

Understanding the use of multiplication to support conversions between units of measurement
what xl3 is? (i.e. can they use 4 xl 2 to work
out 4 xl 3 and 4 xl 4 and beyond?)
Some Key Questions

What do you notice?
What's the same? What's different?

Can you convince me?

How do you know?
Generalisation
Relating arrays to an understanding of square
numbers and making cubes to show cube numbers.
Understanding that the use of scaling by multiples of
10 can be used to convert between units of measure
(e.g. metres to kilometres means to times by 1000)

Some Key Questions

What do you notice?

What's the same? What's different?

Can you convince me?
How do you know?
How do you know this is a prime number?

Some Key Questions
What do you notice?
What's the same? What's different?

Can you convince me?
How do you know?

End of Year Objectives for Multiplication

Year 1 - make connections between arrays, number patterns, and counting including practical problems that combine groups of 2 , 5 or 10

Year 2 - represent multiplication as repeated + and arrays. Practical and informal written methods and vocabulary used to support multiplication alongside known facts and mental strategies. Understand and use ' 3 for free' for x and \div of the 2 , 5 and 10 times-tables. Year 3 - as above and, recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. Describe the effect of Oxl0, TOx10, Ox100, TO x 100. Practical and informal written methods for TO $\mathbf{x} \mathbf{O}$.
Year 4 - Derive and recall x and \div facts up to 12×12 and ' 3 for free' facts. Multiply numbers to 1000 by 10 and 100 . Formal written layout and explain TO/HTO x 0 .
Year 5 - mentally multiply TO \times O. Multiply whole numbers and decimals by 10, 100 and 1000. Formal written methods up to multiply ThHTO x O, ThHTO x TO, ThHTO \div O, O.t \times O
Year 6 - mentally calculate TO \times O, O.t X O. Formal written methods to multiply up to 4 digit by 2 digit and one digit with up to 2 decimal places, Formal written methods to divide up to 4 digit by 2 digit

DIVISION GUIDELINES - Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Stage One	Stage Two	Stage Three

As with addition and subtraction, before progressing through the stages of calculation:

Learning

- It is crucial to know or be able to derive key number facts:
\Rightarrow Understand and use doubling and halving
$\Rightarrow \quad x / \div 10$ (as moving a place to the left/right NOT "add a zero" etc.!!)
- Place value and partitioning MUST be clearly understood and explained using the appropriate mathematical vocabulary.

Teaching

- The number line and the use of arrays must be modelled as images to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. 23×15 should not be calculated vertically. Consider use of numbers carefully.

Always present calculations horizontally in order to consider mental calculations first.

Prerequisite skills (based on the practical) Understanding the language of half in different contexts.
Know halves of even numbers up to 10 .

Sharing

Requires secure counting skills
-see counting and understanding number strand
Develops importance of one-to-one
correspondence
See appendix for additional information on x and \div and aspects of number

Concrete:

Sharing - 6 sweets are shared between 2 people. How many do they have each?

6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)

Practical activities involving sharing, distributing cards when playing a game, putting objects onto plates, into cups, hoops etc.

Concrete: Understand division as repeated grouping and subtracting
$6 \div 2$

Pictorial:

Abstract:

Grouping

Link to counting and understanding number strand Count up to 100 objects by grouping them and counting in

$\div=$ signs and missing numbers

Continue using a range of equations as in Stage 2 but with appropriate numbers.

Understand division as sharing and grouping

$24 \div 3$ can be modelled as:
Sharing - 24 shared between 3
OR
Grouping - How many 3's make 24 ?

Expectations in

Remainders

Yr 2,3
$23 \div 4=5 r 3$
Sharing - 23 shared between 4 , how many left over? Grouping - How many 4's make 23, how many left over? e.g.

Concrete: (for remainders)

$$
13 \div 4=3 \text { remainder } 1
$$

Use of lollipop sticks to form wholes

Grouping

Sorting objects into 2s / 5s/ 10s etc
How many pairs of socks are there?

There are 10 bulbs. Plant 5 in each pot. How many pots are there?

Jo has 10 Lego wheels. How many bicycles can she make?

Pictorial:

This can also be done in a bar so all 4 operations have a similar structure:

Generalisations

- True or false? I can only halve even numbers.
- Grouping and sharing are different types of
tens, fives or twos;..
Find one half, one quarter and three quarters of shapes and sets of objects
$15 \div 5$ can be modelled as:
There are 15 strawberries
How many people can have 5 each? How many 5s make 15 ?
$15 \div 5$ can be modelled as repeated subtraction

In the context of money count forwards and backwards using $2 p, 5 p$ and 10p coins

Practical grouping e.g. in PE
12 children get into teams of 4 to play a game. How many teams are there?

Children should know that division is not commutative.

$6 \div 2=\square$	$\square=6 \div 2$	
$6 \div \square=3$	$3=6 \div \square$	Expectations in
$\square \div 2=3$	$3=\square \div 2$	
$\div \nabla=3$	$3=\square \div \nabla$	

Generalisations

Noticing how counting in multiples if 2,5 and 10 relates

Use of Cuisenaire rods and rulers (using repeated subtraction)

Pictorial:

Abstract:

Generalisations

Inverses and related facts - develop fluency in finding related multiplication and division facts.

Develop the knowledge that the inverse relationship
problems. Some problems need solving by grouping and some by sharing. Encourage children to practically work out which they are doing.

Some Key Questions

How many groups of...?
How many in each group?
Share... equally into...
What can do you notice?
to the number of groups you have counted (introducing times tables)

An understanding of the more you share between, the less each person will get (e.g. would you prefer to share these grapes between 2 people or 3 people? Why?)

Secure understanding of grouping means you count the number of groups you have made. Whereas sharing means you count the number of objects in each group.

Some Key Questions

How many 10s can you subtract from 60?
I think of a number and double it. My answer is 8 . What was my number?

If $12 \times 2=24$, what is $24 \div 2 ?$

Questions in the context of money and measures (e.g. how many 10p coins do I need to have 60p? How many 100 ml cups will I need to reach 600 ml ?)
can be used as a checking method.

Some Key Questions

Questions in the context of money and measures that involve remainders (e.g. How many lengths of 10 cm can I cut from 81 cm of string? You have £54. How many £10 teddies can you buy?)

What is the missing number? $\quad 17=5 \times 3+$

$$
\ldots=2 \times 8+1
$$

DIVISION GUIDELINES - Key language which should be used: share, group, divide, divided by, half, 'is equal to' is the same as'

Generalisations

True or false? Dividing by 10 is the same as dividing by 2 and then dividing by 5. Can you find any more rules like this?

Is it sometimes, always or never true that $\square \div \Delta=\Delta \div \square$?
Inverses and deriving facts. 'Know one, get lots free!' e.g.: $2 \times 3=6$, so $3 \times 2=6,6 \div 2=3,60 \div 20=3,600 \div 3=200$ etc.

Some Key Ouestions

Sometimes, always, never true questions about multiples and divisibility. (When looking at the examples on this page, remember that they may not be 'always true'!) E.g.:

- Multiples of 5 end in 0 or 5 .
- The digital root of a multiple of 3 will be 3,6 or 9 .
- The sum of $z^{`} 4$ even numbers is divisible by 4.

Some Key Ouestions

Sometimes, always, never true questions about multiples and divisibility. E.g.:

- If the last two digits of a number are divisible by 4 , the number will be divisible by 4.
- If the digital root of a number is 9 , the
 number will be divisible by 9 .
- When you square an even number the result will be divisible by 4 (one example of 'proof' shown left)

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

Some Key Questions

Sometimes, always, never true questions about multiples and divisibility. E.g.: If a number is divisible by 3 and 4, it will also be divisible by 12 .

Using what you know about rules of divisibility, do you think 7919 is a prime number? Explain your answer.

End of Year Objectives for Division

Year 1 - practical problems that share into equal groups of 2, 5 or 10.
Year 2 - derive and recall division facts for 2, 5 or 10, represent division as repeated subtraction (grouping) and sharing.
Practical and informal written methods and vocabulary used to support division, including remainders. To know that division is not commutative.
Year 3 - Practical and informal written methods for TO \div O. Understand and use ' 3 for free' for x and \div of the 2, 3, 4, 5, 6, 8 and 10 times-tables. Round remainders up or down, depending on the context.
Year 4 - Derive and recall x facts up to 12×12 and apply ' 3 for free' facts. Divide numbers to 1000 by 10 and 100. Develop and use formal written layouts to record.
Year 5 - Divide whole numbers and decimals by 10,100 and 1000. Divide numbers up to 4 digits by a one digit number using the formal written methods for division and interpret remainders appropriately for the context.
Year 6 - Divide numbers up to 4 digits by a 2 digit whole number using the formal written method of long division interpreting remainders as fractions, decimals, etc. Divide numbers up to 4 digits by a two digit number using the formal written methods for division and interpret remainders appropriately for the context.

Learning

- It is crucial to know or be able to derive key number facts:

$$
\begin{aligned}
& \Rightarrow \quad \text { Understand and use doubling and halving } \\
& \Rightarrow \quad \times / \div 10 \text { (as moving a place to the left/right NOT "add a zero" etc.!!) }
\end{aligned}
$$

- Place value and partitioning MUST be clearly understood and explained using the appropriate mathematical vocabulary.

Teaching

- The number line and the use of arrays must be modelled as images to support calculation from Reception to Year 6.
- Jottings must be modelled as a clear image/strategy for mental calculation.
- If the calculation should be possible mentally then do not give it to practise vertical calculation, e.g. $24 \div 3$ should not be calculated using short division. Consider use of numbers carefully.
Always present calculations horizontally in order to consider mental calculations first.

